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Executive Summary 

Modern energy generation devices have evolved into complex systems that involve many            
different variables. Specifically, input and output variables in power generation turbines can vary             
greatly with tweaking of the inlet temperature of the turbine and the humidity level of the                
ambient air. In this study, a group of students from the Thermal-Fluid Systems class at the                
University of Texas at Austin (UT), Group 4, study the effects of the ambient humidity and inlet                 
air temperature on the output performance of the LM2500 G4+ DLE gas turbine in the UT                
campus power plant. In order to efficiently monitor the relationships between all of the variables,               
Group 4 developed eight different MATLAB scripts for various sections of the turbine. 

Group 4 began by writing a script to calculate the the properties of a fluid given input                 
parameters (such pressure, temperature, or enthalpy). This script allowed Group 4 to track energy              
changes at each stage of the power turbine: 1. The intake stages with the high pressure and low                  
pressure compressors. 2. The combustor stage with heat transfer into the system. 3. The exhaust               
stages with the high pressure and low pressure turbines. 

This useful script allowed Group 4 to move to the first phase of the analysis of the                 
turbine. In this phase, much attention was given to the major energy transitions between each of                
the aforementioned stages. Given a few input variables, Group 4 combined the            
property-calculating script with thermodynamic energy analysis to develop another script that           
calculates output variables for the power turbine, such as power and thermal efficiency. 

In phase 2, Group 4 developed a script that would calculate properties of the combustor,               
such as the lower heating value (LHV), given a detailed description of the input mixture of fuel                 
and air. These output variables would lead Group 4 to calculate the total heat rate of the                 
combustor. This calculated heat rate provided a more realistic “real-world” number for a power              
turbine system. 

Throughout the development of the aforementioned scripts, Group 4 developed other           
small scripts to accomplish more elementary tasks, such as graphing relationships between two             
changing variables. After combining all of these scripts, Group 4 could quickly analyze how the               
most important parameters of the turbine changed with varying input variables. Specifically, how             
the output power, thermal efficiency, and heat rate changed. 

After analyzing these trends, Group 4 developed a greater understanding of real-world            
power turbines. In class before this study, the students only analyzed simplified power turbine              
systems that did not consider important variables such as the ambient air temperature and              
humidity. However, after the complex analysis achieved through discussion, hand calculations,           
and numerous MATLAB scripts, Group 4 can better predict the behavior of not only power               
turbines, but also other thermal-fluid systems. This new level of understanding also allows these              
students to make very informed decisions regarding such systems. 
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Introduction 
 

Over the course of the Spring 2018 semester, Group 4 had been working on creating               

codes in MATLAB that analyzed thermodynamic properties for a GE LM2500+G4 DLE gas             

turbine, the same turbine used in the University of Texas at Austin’s cogeneration power plant.  

There were three “stages” in this project. The first stage involved creating the Ideal Gas               

Mixture Property Calculator, in which MATLAB calculated the following thermodynamic          

properties for a given gaseous mixture of nitrogen, oxygen, water vapor, carbon dioxide, and              

argon (i.e. given molar fractions of constituents), at given temperatures and pressures: molecular             

weight, M; the specific ideal gas constant, R; specific heats at constant pressure and volume, cP                

and cV, respectively; the specific heat ratio, k; the enthalpy, h; the internal energy, u; the entropy,                 

s; the standard entropy, s0; and standard pressure, P0.  

The second stage, also called Phase 1, utilized the Ideal Gas Mixture Property Calculator              

to solve for the net power output, PNET; thermal efficiency, ηTH; fuel mass flow rate ṁ F; specific                 

fuel consumption, SCF; and heat rate, HR, for a “simplified” version of the aforementioned gas               

turbine, at varying ambient air conditions. These “output parameters” were compared to            

tabulated data provided by the University of Texas at Austin (UT). 

The third phase, also called Phase 2, was similar to that of Phase 1, with a few caveats.                  

First, Phase 2 took into account the combustor in the gas turbine, and asked for the lower heating                  

value of the fuel, LHVMIX, at varying combustor temperatures, T4, whereas the LHVMIX of the fuel                

was given as 20,185 BTU/lbm in Phase 1. Additionally, the reaction in the combustor resulted in                

new amounts of nitrogen, oxygen, water vapor, carbon dioxide, and argon, and thus changed the               

molar and mass fractions, and molecular weight of the gaseous mixture (it’s important to note               

3 



 

that no argon is present in the new gaseous mixture, as the air that reacts with the fuel at the                    

beginning of the combustor can also be modeled as “O2 + 3.76N2”, since oxygen and nitrogen                

constitute the vast majority of air. Because air can be roughly modeled as 21% oxygen and 79%                 

nitrogen, there are 3.76 moles of nitrogen for every one mole of oxygen). In creating and                

implementing the combustor code into the overall model, the model was first benchmarked             

against problem E13.XX of Homework #5-2, to ensure that the combustor code was working              

properly. Furthermore, the efficiencies of the low and high pressure compressors and low             

pressure turbine, ηLPC, ηHPC, and ηLPT, respectively, and T4 were calibrated to get as close to the                 

values found in UT’s data as possible, and fixed (it’s important to note that Group 4 made ηLPC                  

and ηHPC the same, as suggested by Dr. Yaguo Wang). From there, sensitivity analyses were               

performed to assess the impact of varying the following design and operating parameters -- the               

ambient inlet temperature, T1; the ambient relative humidity, Φ; T4, ηLPC, and ηLPT -- to calculate                

PNET, ηTH, and HR. 

This report is broken down into the following sections: Background of Aero-Derivative            

Gas Turbines for Power Production, which provides a brief overview of the GE LM2500              

G4+DLE gas turbine; Formulation of MATLAB Models, which provides descriptions of the            

codes used in this project and how they’re used in obtaining the final results, as well as the                  

calibration of the model against UT’s data; Case Studies of General Electric LM2500+G4 DLE              

Gas Turbine Performance, which discusses how PNET, ηTH, and HR change with varying design              

and operating parameters; NOX Formation and Control, which briefly discusses NOX production            

and regulation, and how NOX control is implemented in the GE LM2500+G4 DLE Gas Turbine;               

Conclusion, which summarizes and discusses the results obtained from this project, and provides             
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recommendations for future reports; References; and Appendices A-I that aid in the completeness             

of this project. 
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Background 

For over 50 years, the gas turbine has been a staple of electric utility power generation.                

The first gas turbine used for this purpose in the United States was manufactured in 1949, and                 

development of more advanced, more efficient models has steadily occured since. Now,            

approximately 30 percent of the U.S.’s power comes from gas turbines. 

In UT’s power plant, a GE LM2500 G4+DLE gas turbine is used to generate power. A                

detailed diagram and simplified model of this turbine are shown in Figure 1 below. This is an                 

upgraded version of the GE LM2500 base model, a design that was originally derived from the                

CF6-6 and TF-39 aircraft engines that GE produced at the time. According to GE, this turbine                

class is popular because of its efficiency, reliability, small form factor, and ability to begin               

providing full power in only 10 minutes. This base model outputs 22-24 MW of power with an                 

efficiency up to 36%. However, UT currently uses an upgraded version: a turbine designed              

around the fourth generation of LM2500 technology. This turbine outputs 33-37 MW of power,              

which is significantly more than the older, base model. The “DLE” addendum to the name               

indicates that this turbine has a dual fuel capability including dry low emissions. UT’s power               

plant uses the LM2500 G4+DLE as its main power generation tool. Alongside electricity             

production, the turbine creates hot air in a district model that can be used to heat buildings and as                   

an input for a large number of steam-driven turbines found in cooling stations throughout              

campus.  
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Figure 1: GE LM2500+G4 DLE, and simplified graphic of thermodynamic station designations 

(courtesy of Dr. Yaguo Wang). 
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Formulation of MATLAB Models 

Description of Algorithms 

Group 4 created eight different MATLAB scripts to generate the results requested for             

Phase 2: Calculate_Properties.m, which generated the thermodynamic properties mentioned in          

the Introduction section of this report, and acts as the “backbone” of the other five codes;                

phase2.m, which calculates the aforementioned thermodynamic properties at each station in the            

gas turbine; E13XX.m, which benchmarks the results from problem E13.XX of Homework #5-2;             

stoich.m, a script that outputs the combustion reaction for a given hydrocarbon, proven useful in               

the combustor section of phase2.m and E13XX.m, calibration.m, which compares UT’s data to             

Group 4’s data, and calibrates ηLPC, ηLPT, and T4 accordingly based on the lowest percent error;                

phase1params_calibration.m, which is used in calibration.m to obtain UT’s data and compare            

with Group 4’s data accordingly; sensitivity.m, which performs the sensitivity analyses for PNET,             

ηTH, and HR based on varying T1, Φ, T4, ηLPC, and ηLPT values; and DriverFile.m, which simply                 

allows the user to input values for T1, Φ, T4, ηLPC, and ηLPT, and runs phase2.m to generate values                   

for PNET, ηTH, and HR. Run DriverFile.m, E13XX.m, calibration.m, and sensitivity.m to            

obtain final results. There are three excel spreadsheets that are used in the eight codes:               

Turbine_Inlet_Variation.xlsx, Turbine_Inlet_Variation_Sensitivity_Analysis.xlsx, and   

values.xlsx. The first two spreadsheets contain values that are pertinent to E13XX.m and the              

combustor section of phase2.m. The last spreadsheet contain UT’s data of the gas turbine. It’s               

imperative that these eight scripts and three spreadsheets are in the same path. The folder               

“StoichTools” that’s accompanied with this report contains the aforementioned scripts and           

spreadsheets. 
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Calculation Procedure - phase2.m 

The hand calculations in Appendix I provide useful step-by-step instructions to calculate            

the aforementioned thermodynamic properties at each station in the gas turbine. Out of the eight               

scripts Group 4 created, phase2.m is the most calculative-intensive script, so a procedure for              

phase2.m is presented below: 

 

(1) Before Group 4 could come up with an appropriate gaseous air-like mixture, the mass and                

molar fraction for water vapor, based on the given relative humidity, needed to be calculated,               

using the following equations: 

 

RH0 = (PWV / PSATURATED VAPOR, T1 ) 

ω = 0.622 * [PWV / (PMIX - P V )] = xWV / (1 - xWV ) 

yWV = PWV / PMIX 

 

For the base case, the relative humidity was given as 60%. The saturation pressure of the water                 

vapor, PSaturated Vapor at T1, at varying temperatures were found in Table A-2E of Moran. From there,                 

the pressure of the water vapor at the specified relative humidity, PWV, was used to calculate the                 

mass fraction of the water vapor at the corresponding inlet temperature and pressure. The              

pressure of the gaseous mixture, PMIX, was given as 14.417 psi. Finally, the mole fraction at the                 

corresponding inlet temperature and pressure was calculated using the pressure of the water             

vapor at the specified relative humidity, and the pressure of the gaseous mixture. 
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(2) Group 4 was given input operating and design parameters for the computation of enthalpies,               

pressures, and temperatures -- using Calculate_Properties.m -- at each station in the gas turbine.              

Before this was done, though, a few assumptions were made: “altitude” is not taken into account                

in Phase 2; “working fluid composition” is the gaseous mixture mentioned in step (2) above; the                

aforementioned gaseous mixture is treated as an ideal gas; the bypass and HP compressor              

parasitic bleed air mass flow percents, %m BP , are both 0% for Phase 2; and the calculated output                   

parameters based on non-constant specific heats using polynomial functions employed in the            

property calculator. 

 

(3) The mole and mass fractions of the other constituents in the mixture were calculated once the                 

mole and mass fraction of the water vapor was found. From prior knowledge, nitrogen and               

oxygen make up most of the gaseous mixture, so their mole and mass fractions would control.                

The mole and mass fraction of Argon was calculated by subtracting the sum of mole fractions                

and sum of mass fractions of nitrogen, oxygen, and water vapor. The current atmospheric              

concentration of carbon dioxide is a little over 400 parts-per-million (ppm), magnitudes smaller             

compared to the concentrations of nitrogen, oxygen, and argon. Thus, mole and mass fractions of               

carbon dioxide could almost be considered negligible in this project. However, it’s important to              

note that, at the outlet of the combustor, the molar and mass fractions of the constituents change,                 

due to the air and natural gas mixing and combusting. 
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(4) Once the input and output parameters, as well as the compositions of the gaseous mixture at                 

the inlet of the gas turbine and outlet of the combustor, are established, the enthalpies, pressures,                

and temperatures of each stage can be calculated. The gas turbine is split up into eight different                 

stages: 

 

● Stages 1 and 2 correspond to the variable inlet guide vane, which guide the flow of the gaseous                   

mixture for maximum performance. This results in a drop in pressure, drop in temperature, and               

no change in enthalpy. 

● Stages 2 and 25 correspond to the low pressure compressor, resulting in an increase in                

pressure, temperature, and enthalpy. 

● Stages 25 and 3 correspond to the high pressure compressor, resulting in an even larger                

increase in pressure, temperature, and enthalpy. 

● Stages 3 and 4 correspond to the combustor; here, natural gas is injected and mixes with the                  

gaseous mixture, and combusts. Pressure stays constant, while temperature and enthalpy           

increase. Section 3(c) goes into further depth on how to perform both hand and MATLAB               

calculations involving the combustor. 

● Stages 4 and 48 correspond to the high pressure turbine, resulting in a large decrease in                 

pressure, temperature, and enthalpy. 

● Stages 48 and 5 correspond to the low pressure turbine, resulting in a smaller decrease in                 

pressure, temperature, and enthalpy. 

● Stages 5 and 6 correspond to the generator, resulting in a pressure drop back to 

atmospheric conditions, and no change in temperature and enthalpy. 
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In addition to the input operating and design parameters, there were a few equations used to                

obtain the specified values for each station. One is the ratio of two pressures at designated stages                 

to their corresponding P0 value, as shown below. Two more are the efficiency equations for a                

compressor and turbine, and are presented below: 

 

(Px / Py ) = (Px0 / Py0 ) 

ηCOMPRESSOR (LPC, HPC) = (hx,s - hy ) / (hx,a - h y ) 
 

ηTURBINE (LPT, HPT) = (hy - hx,a ) / (hy - hx,s ) 
 

x and y designate as “placeholder” stations; s symbolizes isentropic, while a is actual. The P0                

value is found from using the property calculator at a designated temperature and pressure. η               

values for the low and high pressure compressors and turbines were found using the              

calibration.m script; for the low and high pressure compressors and low pressure turbine, the              

best-fitted efficiency was 95%, and the best-fitted combustor temperature was 2,400℉. It’s            

important to note that calculating the efficiency of the high pressure turbine was not necessary               

for Phase 2. The actual work done by the low pressure turbine, wLPT,a, is first calculated by                 

dividing the net power output, PNET, by the efficiency of the generator, ηGENERATOR, given as               

97.7%. Then, this number is divided by the inlet air mass flow rate, ṁ AIR,IN, given as 189.7 lbm/s.                  

These are shown in the equations below: 

 

ηGENERATOR = 97.7% = (PNET / WNET,a ) 

WNET,a = ṁ AIR,IN * (h48,a - h5,a ) 
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wLPT,a = (WNET,a / ṁ AIR,in ) = (h48,a - h5,a ) 

 

(5) The pressure and enthalpy (both isentropic and actual) at each station are found using the                

steps above. In addition, five output parameters can be generated: PNET; thermal efficiency of the               

gas turbine, ηTH; fuel mass flow rate, ṁ F; specific fuel consumption, SFC; and the heat rate, HR.                 

See the equations below for how to calculate ηTH, ṁ F, SFC, and HR. 

 

ηTH = (wLPT,a / qIN ) = (wLPT,a / (h4 - h3,a )) * 100% 

ṁ F = (Q̇ IN / LHVMIX) = {(ṁ AIR, IN * (h4 - h3,a )) / LHVMIX} [lbm/s, then converted to lbm/hr] 

SFC = (ṁ F / PNET ) [lbm/kWh] 

HR = (SFC * LHVMIX) [BTU/kWh] 

 

The steps above provides a breakdown of phase2.m. It’s important to note that, in the sensitivity                

analyses, SCF and ṁ F aren’t compared, as the two depend on the other three output parameters,                

resulting in redundant calculations. 

 

Benchmarking Against Problem E13.XX 

Problem E13.XX was a simplified version of the combustor in the gas turbine of this               

project, with a few caveats. Problem E13.XX only asked for the overall combustion equation              

(Part A), fuel-air (mass) ratio (Part B), and molar and mass fractions of the combustion products                

(Part C) based on a fuel mixture of methane and propane, rather than the diverse fuel mixture                 

asked in the problem statement of this project, which included other hydrocarbons and various              
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gases. Additionally, the temperature of the combustor was set at 900℃ (1,652℉), rather than              

1,204.44℃ (2,200℉) like instructed in the problem statement of this project. 

Just like in previous gas turbine problems, this problem is set up with three main               

parameters: the compressor, combustor, and turbine. The compressor was given an inlet            

temperature, T1, of 25℃, and a pressure, P1, of 1 atm. The combustor had inlet and outlet                 

pressures, P2 and P3, respectively, of 5 atm, and a firing temperature, T3, of 900℃, as stated                 

above. 

The following relationship was used to obtain the isentropic reference pressure at state 2,              

P20: 

( P1 / P2 ) = (P10 / P20). 

 

The isentropic reference pressure at state 1, P10 (1.3715), can be found in either the               

Schmidt or Moran tables for air at 25℃. Once that value is obtained, the only other unknown is                  

P20, which was calculated to be 6.8575. From there, the enthalpy and temperature of air at P20 can                  

be calculated by linearly interpolating between two enthalpy and temperature values whose            

corresponding isentropic reference pressures are lower and higher than that of P20. These values              

came out to be 473.34 kJ/kg and 197.08℃, respectively. 

 

(Part A) 

The molar lower heating value, or MIX, of the fuel mixture was calculated by      LHV         

multiplying the LHV of each constituent (in kJ/kg) by their corresponding molecular weights,             
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Mi, and molar fractions, yi, and adding these values together. The following equation shows this               

methodology: 

 

MIX = Σ{yi*LHVi*Mi} ≈ 1,423,398.4 kJ/kmolLHV  

 

The above value can also be given in terms of kJ/kg and kJ/scm. The MIX can be              LHV     

divided by the molecular weight of the fuel mixture (30.07 kg/kmol) to get LHVMIX, or the lower                 

heating value on a mass basis. Additionally, the LHVMIX can be written in terms of kJ/scm by                 

multiplying by the density of natural gas, which is around 0.8 kg/m3. The two LHVMIX values are                 

presented below: 

 

LHVMIX = (1,423,398.4 kJ/kmol) / (30.07 kg/kmol) = 47,336.8 kJ/kg 

LHVMIX =  (47,336.8 kJ/kg) * (0.8 kg/m3) = 37,868.8 kg/scm 

 

The fuel in this problem is comprised of equal molar parts methane and propane, so the                 

molar fraction of each constituent was 0.5. The MIX is equal to the difference in change of        LHV          

molar enthalpies of products and reactants. The following equation presents a clearer definition: 

 

MIX = ΣP{Ai ∆ i } - ΣR{Aj ∆ j },LHV h h  

 

where Ai and Aj are the number of moles for a given constituent that’s either on the products or                   

reactants side of the combustion equation, respectively; ∆ i and ∆ j are the changes in molar       h   h       
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enthalpies for a given constituent that’s either on the products or reactants side of the combustion                

equation, respectively; the small p and r subscripts in front of the two sigmas signify products                

and reactants, respectively.  

The stoichiometric combustion equation of each fuel help in finding the Ai or Aj of each                

constituent. The stoichiometric combustion equations for 0.5 moles of methane and propane,            

respectively, are presented below: 

 

0.5CH4 + (O2 + 3.76N2) ↔  0.5CO 2 + H2O + 3.76N2 

0.5C3H8 + 2.5(O2 + 3.76N2) ↔  1.5CO 2 + 2H2O + 9.4N2 

 

It’s important to note that there might be excess air, x, present in the above reactions. The                 

actual combustion equations for 0.5 moles of methane and propane, respectively, are given as: 

 

0.5CH4 + (1+x)(O2 + 3.76N2) ↔  0.5CO 2 + H2O + (x)O2 + 3.76(1+x)N2 

0.5C3H8 + 2.5(1+x)(O2 + 3.76N2) ↔  1.5CO 2 + 2H2O + 2.5(x)O2+ 9.4(1+x)N2 

 

The overall combustion equation, or the combination of the combustion equations for            

each fuel that take into account excess air, is given below: 

 

0.5CH4 + 0.5C3H8 + 3.5(1+x)(O2 + 3.76N2) ↔  2CO 2 + 3H2O + 3.5(x)O2 + 13.16(1+x)N2 
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Group 4 utilized the MATLAB function stoich, which allows a user to input different              

elements/compounds, and outputs the chemical equation corresponding to the inputted          

elements/compounds, as well as an array of the number of moles of each constituent. For               

example, if a user wanted to find the chemical reactions corresponding to the combustion of               

methane and oxygen and the combustion of propane and oxygen, as well as the number of moles                 

of each constituent in the two reactions, the user would type the following: 

 

stoich({'CH4', 'O2','CO2','H2O'}); 

stoich({'C3H8', 'O2','CO2','H2O'}); 

 

and MATLAB will output the following: 

 

CH4 + 2O2 ↔  CO 2 + 2H2O; [-1, -2, 1, 2]; 

2C2H6 + 7O2 ↔  4CO 2 + 6H2O; [-1, -3.5, 2, 3]. 

 

A negative sign indicates a constituent on the reactants side, while the lack of a negative                

sign indicates a constituent on the products side. The product of the absolute value of an array                 

and the molar fraction of the hydrocarbon is used in subsequent calculations in obtaining the               

desired results. The stoich function is useful in calculating the desired results using a fuel               

mixture of a multitude of gases, as the user can simply create a new array of moles of reactants                   

and products that corresponds to the combustion of a given hydrocarbon, as directed in the               

problem statement of this project. 
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It’s evident that carbon dioxide, water vapor, oxygen, and nitrogen are present on the              

products side, while methane, propane, oxygen, and nitrogen are present on the reactants side.              

The change in molar enthalpy for a constituent either on the products or reactants side, ij is               h   

given by the following equation: 

 

∆ ij = ij(Tij ,Pij ) - ij(25℃, 1 atm),h h h  

 

where ij(25℃, 1 atm) is considered the “reference enthalpy” of the constituent, or the enthalpy h               

of the constituent at 25℃ and 1 atm, and ij(Tij ,Pij ) is the enthalpy of the constituent at a given         h             

(or calculated) temperature and pressure. So, for oxygen and nitrogen on the reactants side, i(Ti              h  

,Pi ) correspond to O2, N2(197.08℃, 5 atm), respectively; propane and methane are coming into    h            

the combustor at 25℃ and 1 atm, so, essentially, their i terms will cancel out with their          h        

respective reference enthalpies. For carbon dioxide, water vapor, oxygen, and nitrogen, j(Tj ,Pj )           h    

correspond to CO2, H2O, O2, N2(900℃, 5 atm), respectively. Mass enthalpy values for these  h             

constituents at temperatures of 900, 197.08, and 25℃ are obtained from the ideal gas tables of                

each constituent. It’s important to remember that these mass enthalpy values (in kJ/kg) need to               

be multiplied by their respective molecular weights to obtain molar enthalpy values (in kJ/kmol). 

 

From there, the change in enthalpy for each constituent is multiplied by the number of               

moles of that constituent present in the overall combustion equation, i.e., the number in front of                

each constituent (Ai or Aj). For example, there are two moles of carbon dioxide in the overall                 

combustion equation, so the change in enthalpy of carbon dioxide would look like: 
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∆ CO2 = (2)*[ CO2(900℃, 5 atm) - CO2(25℃, 1 atm)].h h h  

 

From the equation above, it’s evident that Aj for carbon dioxide is 2. The change in                

enthalpy of oxygen on the reactant side would look like: 

 

∆ O2, REACT = (3.5)*(1+x)*[ O2(197.08℃, 5 atm) - O2(25℃, 1 atm)].h h h  

 

From the equation above, it’s evident that Ai for oxygen on the reactant side is               

(3.5)*(1+x). This is done with all of the other constituents in the overall combustion equation.               

All changes in enthalpy for constituents on the reactants side (oxygen and nitrogen) are              

subtracted from the changes in enthalpy for constituents on the products side (carbon dioxide,              

water vapor, oxygen, and nitrogen); this value is equal to MIX. Simple algebra is done to          LHV       

find the only unknown, x, which corresponds to 2.57, indicating that the fuel mixture reacts with                

357% theoretical air. Additionally, the number of moles in front of the (O2 + 3.76N2) term, AO2,                 

REACT, is (3.5)*(1+2.57) ≈ 12.5. The overall complete combustion reaction is given below: 

 

0.5CH4 + 0.5C3H8 + 12.5(O2 + 3.76N2) ↔  2CO 2 + 3H2O + 9O2 + 47N2 

 

(Part B) 

19 



 

The above reaction gives us the tools needed to calculate the fuel-air (mass) ratio, 

F/AMASS, and the molar and mass fractions of the combustion products. The following equation 

below calculates F/AMASS: 

 

 F/AMASS = [(ACH4*MCH4 ) + (AC3H8*MC3H8 )] / [AO2, REACT*4.76*(0.21*MO2 + 0.79*MN2 )], 

 

where ACH4, AC3H8, and AO2, REACT are the number of moles of methane and propane (both 0.5) and                  

oxygen (12.5); and MCH4, MC3H8, MO2, and MN2 are the molecular weights of methane, propane,               

oxygen, and nitrogen, respectively. 4.76 is included in the denominator because there are 4.76              

moles of air (1 mole of oxygen and 3.76 moles of nitrogen) for every one mole of fuel. 0.21 ad                    

0.79 are multiplied by the molecular weights of oxygen and nitrogen, respectively, to account for               

the fact that air is comprised primarily of 21% oxygen and 79% nitrogen. The F/AMASS was                

calculated to be 0.0175 kg fuel per kg compressor inlet air. 

 

(Part C) 

Based on the overall combustion equation, there are 61 total moles of product, made up               

of carbon dioxide, water vapor, oxygen, and nitrogen. The molar and mass fractions of each               

constituent, yj and xj, are found by the following equations: 

 

yi = (ni / nTOTAL ) 

xi = (yi*Mi ) / (MMIX ) = (yi*Mi ) / (∑yi*Mi ), 
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where Mi is the molecular weight of the constituent, and MMIX is the sum of the product of the                   

molar fraction and molecular weight of each constituent. The mole fractions of carbon dioxide,              

water vapor, oxygen, and nitrogen were calculated to be 0.0330, 0.0490, 0.1475, and 0.7705,              

respectively; the mass fractions of carbon dioxide, water vapor, oxygen, and nitrogen were             

calculated to be 0.0507, 0.0308, 0.1648, and 0.7537. 

 

Calibration of MATLAB Model Against UT Power Plant Data 

In order to calibrate Group 4’s MATLAB model against UT’s power plant data, the              

model’s input parameters were methodically adjusted in an effort to replicate the values found in               

UT’s data. To simplify this calibration, Group 4 assumed that ηLPC
= ηHPC. This compressor               

efficiency was adjusted, along with turbine efficiency, ηLPT; and turbine inlet temperature, T4. To              

match UT’s data, dry bulb intake temperature was set constant at 65 °F and the humidity ratio                 

was held constant at 60%. 

Group 4 chose to calibrate their MATLAB model by comparing the net power output of               

their model against the net power output found in UT’s data. To reduce error, each combination                

of efficiencies and firing temperature was evaluated across 17 temperatures, spanning a range of              

inlet temperatures from 30 °F to 110 °F. The percent errors were then averaged across all                

temperatures to create a net percent error for each trial. Group 4 wrote a MATLAB script called                 

“calibration.m” to perform the above actions. After 18 iterations, Group 4 determined the ηLPC =               

0.95, ηLPT = 0.95, and T4 = 2,400 °F. This yielded a percent error of 8.03%. A table displaying the                    

percent error for each iteration is shown below, with the best-fitted row highlighted in red. 

 
Table 1: Percent Error between Group 4’s and UT’s power data. 
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ηLPC ηLPT T4  (°F) % Error 

0.88 0.88 2,200 30.1341 

0.75 0.90 2,200 38.5273 

0.80 0.90 2,200 34.4197 

0.90 0.90 2,200 26.2538 

0.95 0.90 2,200 22.2135 

0.95 0.95 2,200 16.9067 

0.95 0.95 2,400 8.0320 

0.95 0.95 2,300 11.6318 

0.95 0.90 2,400 11.2022 

0.80 0.95 2,400 19.9510 

0.90 0.90 2,400 15.3532 

0.90 0.95 2,400 11.0430 

0.92 0.97 2,400 8.5353 

0.92 0.97 2,300 12.4199 

0.95 0.80 2,300 29.7258 

0.95 0.85 2,400 16.6868 

0.95 0.95 2,375 8.5706 

 

Figure 2 below shows the relationship between Group 4’s and UT’s power data at the selected                

efficiencies and firing temperature. This figure shows that Group 4’s power data matches UT’s              

data very closely at an inlet temperature of 80 °F, but the percent error between the two data sets                   

grows at higher and lower inlet temperatures. The efficiencies and firing temperature selected by              

Group 4 reduce this percent error across the entire 30 °F to 110 °F inlet temperature range. 
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Figure 2: Group 4’s vs UT’s Power Data at ηLPC = 0.95, ηLPT = 0.95, and 

T4 = 2400 °F. 
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Case Studies of General Electric LM2500+G4 DLE Gas Turbine Performance  

In this section, the GE LM2500+G4 DLE MATLAB model was used to investigate the              

effects of small changes in parameters on the performance figures of the power plant. The model                

used was calibrated to match performance data from GE in previous sections, where given              

parameters were varied from the given baseline to observe the sensitivity of the power plant.               

Figures 3-7 and Table 2 show the effects of each parameter, and this is further discussed below,                 

where each case only investigates a single variable (all other variables kept at baseline). The               

performance figures observed are thermal efficiency, power, and heat rate. While the model is              

not completely accurate according to data, this does not affect its ability to produce data for this                 

investigation.  

 

Effect of compressor inlet (ambient) temperature:  

Base: 65 °F Variation: ± 40 °F incremented by 20 °F 

Increasing the ambient temperature increases the heat rate of at an increasing rate, while              

decreasing both thermal efficiency and power. It has the greatest effect on power generation,              

where a change of 25℉ will change power by 10%, while only changing the other two figures by                  

approximately 3%. 
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Effect of relative humidity:  

Base: 60% Variation: ±40% incremented by 20%  

The power plant is relatively insensitive to humidity, where a change of 40% in humidity only                

alters output figures by up to 3%. The relationships are like that of ambient temperature but                

significantly lower in magnitude.  

 

Effect of turbine inlet temperature:  

Base: 2200 °F Variation: ±100 °F incremented by 50 °F  

Turbine inlet temperature has the opposite effect on output figures compared to ambient             

temperature. Increasing the turbine inlet temperature greatly increases power, while having           

relatively minor effects on heat rate and thermal efficiency.  

 

Effect of turbine efficiency (LPT):  

Base: 86% (of the best-fitted value) Variation: ±8% incremented by 4%  

Low pressure turbine efficiency shows a similarly linear effect on all three parameters, where              

heat rate is inversely related, and power and thermal efficiency are directly related. Interestingly,              

thermal efficiency and power are exactly the same line, which shows that the turbine efficiency               

directly relates the two output figures to each other.  

 

Effect of compressor efficiency (LPC, HPC):  

Base: 82% (of the best-fitted value) Variation: ±8% incremented by 4% 

The compressor efficiency is the parameter that affects all output figures the most significantly.              
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It shows similar trends with turbine efficiency, but to a greater extent. In contrast, the effects are                 

non-linear, with the power plant becoming less sensitive as efficiency increases.  

 

Figure 3: Percent change of PNET, ηTH, and HR as a function of varying compressor inlet 

temperature, T1. 
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Figure 4: Percent change of PNET, ηTH, and HR as a function of varying compressor efficiency, 

ηLPC, HPC. 

 

Figure 5: Percent change of PNET, ηTH, and HR as a function of varying humidity ratio, Φ.  

 

Figure 6: Percent change of PNET, ηTH, and HR as a function of varying turbine efficiency, ηLPT. 
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Figure 7: Percent change of PNET, ηTH, and HR as a function of varying combustor temperature, 

T4. 
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Table 2: Results of Parameter Sensitivity Studies - ηLPT = 81.7% (86% of 95%) ; ηLPC,HPC = 77.9% 

(82% of 95%); T4 = 2,200°F 

 

Case Power 
(MWe) 

% 
change 

Thermal 
Efficiency 

(%) 

% 
 change 

Heat rate 
(Btu/kWh) 

% 
change 

Base 23,173 0 38.28 0 9,123.6 0 

Turbine inlet Base 
+100°F 

25,450 9.83 38.82 1.41 8,995.6 -1.40 

Turbine inlet Base 
-100°F 

20,827 -10.12 37.63 -1.70 9,281.7 1.73 

Turbine efficiency 
(LPT) Base + 8% 

25,443 9.80 42.03 9.80 8,309.9 -8.92 

Turbine efficiency 
(LPT) Base - 8% 

20,904 -9.79 34.53 -9.80 10,114.0 10.86 

Comp efficiency 
(HPC, LPC) Base 

+ 8% 

27,730 19.67 41.97 9.64 8,321.4 -8.79 

Comp efficiency 
(HPC, LPC) Base 

- 8% 

17,343 -25.16 32.44 -15.26 10,765.0 17.99 

Ambient temp 
Base +40°F 

19,756 -14.75 36.58 -4.44 9,547.9 4.65 

Ambient temp 
Base -40°F 

26,226 13.17 39.57 3.37 8,826.3 -3.26 

Ambient humidity 
Base +40% 

22,500 -2.90 38.06 -0.57 9,175.3 0.57 

Ambient humidity 
Base -40% 

23,901 3.14 38.51 0.60 9,069.9 -0.59 
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NOx Formation and Control 

The fuel that partakes in combustion for the development of heat in the gas turbine               

primarily reacts with the air intake. Nitrogen, N2, and oxygen, O2, compose most of the air                

substance that reacts with the fuel. However, while this reaction takes place, large amounts of               

heat release into the chamber. The immense amount of thermal energy greatly affects the way               

nitrogen and oxygen behave during the reaction. At high temperatures, the excess oxygen and              

nitrogen react as follows (described as the Zeldovich mechanism): 

 

N2+ O → NO + N 

N + O2 → NO + O 

N + OH → NO + H 

 

One of the products, nitrogen oxide, NO, severely pollutes the atmosphere as it generates              

smog and acid rain. For this reason, it’s desirable, and often required by law, to reduce the                 

emission of nitrogen oxides, NOX. Many power plants and gas turbines apply various methods to               

achieve lower levels of NOX. Many engineers have recently developed a premixed fuel that              

contains Hydrogen, H2, that causes lower NOx levels. Others inject water throughout the             

combustion process that increases efficiency in addition to the NOX reduction. In the LM2500              

G4+ DLE Gas Turbine in the UT power plant, the engineers implement two different methods to                

control NOX levels. For precombustion, they redirect airflow to cool down the flame in the               

combustion chamber. This lower temperature reduces the chances of NOX production due to the              

high temperature dependency of the Zeldovich mechanism. For post-combustion, the engineers           
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implement a process called selective catalytic reduction. In this process, they inject a catalyst              

(namely, ammonia, NH3) into the exhaust. This causes a chemical reaction with the NOX that               

produces stable N2 and water, H2O, and reduces the NOX levels.  
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Conclusion 

Summary of Observations 
 

As previously discussed in the “background” section of this report, UT uses a GE              

LM2500 G4+ DLE gas turbine in its campus power plant. Throughout the semester, Group 4 has                

analyzed this gas turbine with increasing levels of complexity. Group 4 has become increasingly              

familiar with the performance of this machine, and has been able to identify several trends in the                 

device’s performance. To model the various stages of this gas turbine, Group 4 used eight               

different MATLAB scripts. Together, these scripts are capable of comprehensively modeling the            

performance of the turbine at a variety of inlet temperatures and humidity levels. 

To ensure that Group 4’s model generated accurate results, it was compared to a              

simplified combustor in Problem 13.XX. Group 4’s calculator generated results very similar to             

the theoretical values in this problem. Once the MATLAB model was shown to be effective,               

Group 4 was able to calibrate the compressor efficiency, turbine efficiency, and firing             

temperature of the system by comparing the model against data supplied by UT. Group 4 reached                

final calibrated values of ηHPC = ηLPC = 0.95, ηLPT = 0.95, and T4 = 2,400 °F. This combination                   

reduced the net power generation percent error across a range of 30 °F to 110 °F to 8.03%.  

Once the above values were finalized, Group 4 was able to determine the effect of each                

individual variable on power output, thermal efficiency, and heat rate. A full analysis of this data                

can be found in the “case study” section of this report, but some of the most noteworthy                 

relationships are as follows:  

 

1. Increasing the inlet temperature 25 °F decreases power by 10% 
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2. Relative humidity had very little impact on power, heat rate, and thermal efficiency 

3. Turbine efficiency directly relates power and thermal efficiency 

4. Compressor efficiency variation causes the most significant change in all three output            

parameters 

 

Group 4’s final observations related to the NOx production of this gas turbine. Group 4               

determined that the turbine generated the highest density of pollutants when operating at             

extremely high temperatures. To combat this issue, UT’s power plant operators redirect turbine             

airflow to cool down the flame used in combustion, while simultaneously injecting a catalyst into               

the turbine’s exhaust that converts NOx to stable N2 and water. 

 

Discussion of What Group 4 has Learned 

By completing this project, Group 4 was exposed to the true complexities of a              

commercial gas turbine. In previous courses and homework problems, turbines have been            

modeled as simple, single or dual-stage systems with some set efficiency. However, this project              

involved the analysis of a multi-stage system involving compressors, turbines, and a combustor.             

Fuel composition, humidity, and changing air temperatures throughout the turbine were also            

considered. 

The most important thing Group 4 learned by completing this project was the             

relationships between firing temperature, turbine and compressor efficiencies, inlet temperature,          

humidity ratio, and the turbine outputs of power, thermal efficiency, and heat rate. For example,               

the direct relationship between firing temperature and net power output was not well understood              
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by Group 4 before this project. This relationship makes sense when viewed through the lens of                

Carnot efficiency, the ideal efficiency that a turbine can obtain. 

 

ηcarnot = 1 - ( TCOLD / THOT ) 

 

Increasing firing temperature increased the denominator of the above equation, resulting in            

higher efficiency, and therefore, higher power output. 

Another interesting relationship Group 4 learned about was the effect of humidity ratio             

on gas turbines. Group 4’s MATLAB model showed that an increase in humidity ratio increased               

the turbine’s net power output and thermal efficiency, while decreasing the heat rate.             

Relationships like this would never have been realized without the completion of this project.  

 

Recommendations 

The most significant obstacle encountered by Group 4 during the completion of this             

project was a lack of clear instructions on several segments of the project. For example, the                

property calculator instructions did not define P0. This was a major roadblock and source of               

confusion for this part of the project, as we had not discussed this variable in class yet, and                  

in-depth descriptions of it were scarce online. 
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Appendix A - Calculate_Properties.m 

% M E 343 - Thermal-Fluid Systems - Spring 2018 

% Presented to: Dr. Yaguo Wang, Abdurrahman El-Ghorab 

  

% Nick Behling, Laurence Castaneda, Axel Durham, Avan Zeng 

% Phase 2 

  

% This script is the same script that was used in our Property Calculator 

% Project. This script is the "skeleton" to the "phase2.m" script, which 

% calculates all of the temperatures, pressures, and enthalpies at each 

% state within the gas turbine at an inlet temperature of 65 degrees 

% Fahrenheit. DO NOT RUN THIS CODE! 

  

function [M, R, cp, cv, k, u, h, s0, s, p0] = Calculate_Properties(mol_fraction, T, P) 
% initializations 

mol_mass = [31.9988, 28.0134, 18.01528, 44.01, 39.948]; 

Tref = 0.1; 

R_bar = 8.314; 

cp_matrix = [25.48  0.0152  -0.000007155 1.312E-09; 

28.9 -0.001571   0.000008081 -2.873E-09; 

32.24   0.001923    0.00001055  -3.595E-08; 

22.26   0.05981 -0.00003501 7.469E-09; 

2.5*R_bar 0 0 0]; 

cp_matrix = cp_matrix./transpose(mol_mass); 

href = 0; % kJ/kg 
s0ref = [6.3303, 6.7494, 10.310, 4.7857, 0] ; 

Pref = 101.325; %kPa 
  

M = sum(mol_fraction.*mol_mass); 

mass_fraction = (mol_mass.*mol_fraction)./M; 

R = R_bar/M; 

Ri = R_bar./mol_mass; 

T_poly = transpose([1, T, T^2, T^3]); %cp polynomial 
cp_array = cp_matrix*T_poly; 

%cp_array = cp_array./transpose(mol_mass); 

cp = mass_fraction*cp_array; 

cv = cp-R; 

k = cp/cv; 

  

%calculate h by integrating cpdt for each element and summing xi*hi 

h = 0; 

for row = 1:5 
cp_poly = @(x)cp_matrix(row,1)+ cp_matrix(row,2)*x + cp_matrix(row,3)*x.^2 +        

cp_matrix(row,4)*x.^3; 

    cpdt = integral(cp_poly, Tref, T); 

    h = h + mass_fraction(row)*(cpdt+href); 

end 

  

pv = (R_bar*T)./mol_mass; 
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Pi = mol_fraction.*P; 

  

%find u using h - pv for each gas then summing like for h 

u_array = h - pv; 

u = sum(u_array.*mass_fraction); 

  

s0 = 0; 

Tref2 = 273.15; 

for row = 1:5 
cpt_poly = @(x)(cp_matrix(row,1)+ cp_matrix(row,2)*x + cp_matrix(row,3)*x.^2 +        

cp_matrix(row,4)*x.^3)./x; 

    cptdt = integral(cpt_poly, Tref2, T); 

    s0 = s0 + mass_fraction(row)*(cptdt+s0ref(row)); 

end 

s2 = mass_fraction.*Ri.*log(Pi./Pref); 

s2(isnan(s2))=0; 

s = s0 - sum(s2); 

s0ref2 = 8.2535; 

p0 = exp(s0/R)/exp(s0ref2/R); 

end 
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Appendix B - phase2.m 

% M E 343 - Thermal-Fluid Systems - Spring 2018 

% Presented to: Dr. Yaguo Wang, Abdurrahman El-Ghorab 

  

% Nick Behling, Laurence Castaneda, Axel Durham, Avan Zeng 

% Phase 2 

  

function [P, e_th, hr] = phase2(T0, humid, e_lpt, e_lpc, T4) 
values = "values.xlsx"; 
%P_array = xlsread(values, 1, "B34:W34"); 

ar_array = xlsread(values, 1, "B93:W93"); 
n2_array = xlsread(values, 1, "B94:W94"); 
o2_array = xlsread(values, 1, "B95:W95"); 
h2o_array = xlsread(values, 1, "B97:W97"); 
co2_array = xlsread(values, 1, "B96:W96"); 
%input parameters 

col = T0/5; 

%P = P_array(col); 

P0 = 14.417; %psi 
%T0 = 65; %F 

m_air = 86.046; %kg/sec 
d_p_in = 4; %in h20 
d_p_out = 10; 

lhv = 20185; %btu/lbs 
e_hpc = e_lpc; 

%humid = 0.6; 

y_o2 = o2_array(col); %0.20; 
y_n2 = n2_array(col); %0.78; 
y_h2o = h2o_array(col); %y_wv; 
y_co2 = co2_array(col); %0.000004; 
y_ar = ar_array(col); %0.0073; 
y_h2o = y_h2o*humid/0.6; 

y_tot = y_o2+y_n2+y_h2o+y_co2+y_ar; 

y_o2 = y_o2/y_tot; 

y_n2 = y_n2/y_tot; 

y_h2o = y_h2o/y_tot; 

y_co2 = y_co2/y_tot; 

y_ar = y_ar/y_tot; 

y = [y_o2, y_n2, y_h2o, y_co2, y_ar]; 

  

  

% Reference enthalpy of air at standard temperature (25°C = 77°F) and 

% pressure (101.325 kPa), used in the combustor section of this code. 

[M, ~, ~, ~, ~, ~, h_standard, ~, ~, ~] = Calculate_Properties(y, 77, 101.325); 

h_mol_standard = M.*h_standard; 

  

% State 1 - VIGV 

T1 = T0; 

P1 = P0; 
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% State 2 - Going into LPC 

T2 = T1; 

P2 = P1 - d_p_in*0.03609; 

  

% Find cp, cv, k, h1 and h2. 

[~, ~, ~, ~, ~, ~, h2, ~, ~, p0_2] = Calculate_Properties(y, (T2-32)*(5/9)+273.15,             

P2*6.89476); 

h1 = h2; 

  

% State 2.5 - Going into HPC 

P25 = 6*P2; 

p0_25 = 6*p0_2; 

  

% Find T25 

T25 = intp0(p0_25, 273.15, 1000, P25); 

[~, ~, ~, ~, ~, ~, h25s, ~, ~, ~] = Calculate_Properties(y, T25, P25*6.89476); 

h25 = (h25s-h2)/e_lpc+h2; 

  

w_lpc = h25 - h2; 

T25 = inth(h25, 273.15, 1000, P25); 

[~, ~, ~, ~, ~, ~, ~, ~, ~, p0_25] = Calculate_Properties(y, T25, P25*6.89476); 

  

% State 3 - Going into Combustor 

P3 = 4*P25; 

p0_3 = p0_25*4; 

  

T3 = intp0(p0_3, 273.15, 1000, P3); 

[M, ~, ~, ~, ~, ~, h3s, ~, ~, ~] = Calculate_Properties(y, T3, P3*6.89476); 

h3 = (h3s-h25)/e_hpc+h25; 

T3 = inth(h3, 273.15, 1000, P3); 

h3_mol = M.*h3; 

  

w_hpt = h3-h25+w_lpc; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% COMBUSTOR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%% Breakdown of array: 

%% [Methane, Ethane, Propane, Butane, Pentane, Hexane, Nitrogen, Oxygen, Carbon          

Dioxide] 

  

y_fuelmix = [0.8450, 0.0558, 0.0205, 0.0078, 0.0018, 0.0017, 0.0593, 0.0014, 0.0067]; 

MWT_fuelcomponents = [16.04, 30.07, 44.1, 58.12, 72.15, 86.18, 28.0134, 31.998,          

44.01]; % kg/kmol 
MWT_aircomponents = [44.01, 31.998, 18.01528, 28.0134]; 

LHV_mass_array = [50020, 47480, 46360, 45720, 45350, 44138.176, 0, 0, 0]; % kJ/kg 
  

  

LHV_bar_total = sum(y_fuelmix.*MWT_fuelcomponents.*LHV_mass_array); % kJ/kmol 
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LHV_total = LHV_bar_total./(sum(y_fuelmix.*MWT_fuelcomponents)); %kJ/kg 
LHV_scm_total = LHV_total*0.8; % KJ/scm; assumption: natural gas has a density of 0.8             

kj/m3 

  

file = "Turbine_Inlet_Variation_Sensitivity_Analysis.xlsx"; 
temp_array = xlsread(file,1,"A2:A8"); 
CO2_array = xlsread(file,1,"B2:B8"); 
H2O_array = xlsread(file,1,"C2:C8"); 
N2_array = xlsread(file,1,"D2:D8"); 
O2_array = xlsread(file,1,"E2:E8"); 
  

% Group 4 found a folder of MATLAB scripts online that deals with 

% stoichiometric equations. We utilized one of them, called "stoich", in this 

% script. Below shows the syntax of the "stoich" function. For example, if 

% you type: 

  

% "stoich({'CH4', 'O2','CO2','H2O'})", it'll output: 

  

% "CH4 + 2 O2 <=> CO2 + 2 H2O", as well as the moles of the 

% coefficients, shown below. Negative indicates reactants, positive 

% indicates products. The first number is the hydrocarbon, second is O2, 

% third is CO2, and fourth is H2O. 

  

% Don't worry about signs, Group 4 takes the absolute value of 

% everything anyway. It all works out. 

  

% -1 

% -2 

% 1 

% 2 

  

% For your reference: 

  

% stoich({'CH4', 'O2','CO2','H2O'}) % Methane 

% stoich({'C2H6','O2','CO2','H2O'}) % Ethane 

% stoich({'C3H8', 'O2','CO2','H2O'}) % Propane 

% stoich({'C4H10','O2','CO2','H2O'}) % Butane 

% stoich({'C5H12','O2','CO2','H2O'}) % Pentane 

% stoich({'C6H14','O2','CO2','H2O'}) % Hexane 

  

% Copyright Jeffrey Kantor, University of Notre Dame. All rights reserved. 

  

methane = stoich({'CH4', 'O2','CO2', 'H2O'}).*(y_fuelmix(1)); 
ethane = stoich({'C2H6','O2','CO2','H2O'}).*(y_fuelmix(2)); 
propane = stoich({'C3H8', 'O2', 'CO2','H2O'}).*(y_fuelmix(3)); 
butane = stoich({'C4H10','O2','CO2','H2O'}).*(y_fuelmix(4)); 
pentane = stoich({'C5H12','O2','CO2','H2O'}).*(y_fuelmix(5)); 
hexane = stoich({'C6H14','O2','CO2','H2O'}).*(y_fuelmix(6)); 
  

combinedHCs = abs(methane+ethane+propane+butane+pentane+hexane); 
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% Listed in the following order: Fuel, Oxygen, Carbon Dioxide, Water Vapor 

totalcombined = [sum(y_fuelmix);   

combinedHCs(2);combinedHCs(3)+y_fuelmix(9);combinedHCs(4)]; 

  

%% Below finds the amount of excess oxygen, "x". 

if T4 == 2100 
    x = (LHV_bar_total - (totalcombined(3).*((CO2_array(2)-CO2_array(1))))... 
        -(totalcombined(4).*((H2O_array(2)-H2O_array(1))))... 
        -(3.76.*(totalcombined(2)).*((N2_array(2)-N2_array(1))))... 
        -(y_fuelmix(7).*((N2_array(2)-N2_array(1))))... 
        -(y_fuelmix(9).*((CO2_array(2)-CO2_array(1))))... 
 -(y_fuelmix(8).*((O2_array(2)-O2_array(1))))... 
        +(4.76.*totalcombined(2).*((h3_mol-h_mol_standard))))... 
        ./((totalcombined(2).*((O2_array(2)-O2_array(1))))+... 
        (3.76.*totalcombined(2).*(N2_array(2)-N2_array(1)))... 
 -(4.76.*totalcombined(2).*(h3_mol-h_mol_standard))); 

elseif T4 == 2150 
 x = (LHV_bar_total - (totalcombined(3).*((CO2_array(3)-CO2_array(1))))... 
        -(totalcombined(4).*((H2O_array(3)-H2O_array(1))))... 
        -(3.76.*(totalcombined(2)).*((N2_array(3)-N2_array(1))))... 
        -(y_fuelmix(7).*((N2_array(3)-N2_array(1))))... 
        -(y_fuelmix(9).*((CO2_array(3)-CO2_array(1))))... 
        -(y_fuelmix(8).*((O2_array(3)-O2_array(1))))... 
        +(4.76.*totalcombined(2).*((h3_mol-h_mol_standard))))... 
        ./((totalcombined(2).*((O2_array(3)-O2_array(1))))+... 
        (3.76.*totalcombined(2).*(N2_array(3)-N2_array(1)))... 
        -(4.76.*totalcombined(2).*(h3_mol-h_mol_standard))); 

  

elseif T4 == 2200 
        x = (LHV_bar_total - (totalcombined(3).*((CO2_array(4)-CO2_array(1))))... 
        -(totalcombined(4).*((H2O_array(4)-H2O_array(1))))... 
        -(3.76.*(totalcombined(2)).*((N2_array(4)-N2_array(1))))... 
        -(y_fuelmix(7).*((N2_array(4)-N2_array(1))))... 
        -(y_fuelmix(9).*((CO2_array(4)-CO2_array(1))))... 
        -(y_fuelmix(8).*((O2_array(4)-O2_array(1))))... 
        +(4.76.*totalcombined(2).*((h3_mol-h_mol_standard))))... 
        ./((totalcombined(2).*((O2_array(4)-O2_array(1))))+... 
   (3.76.*totalcombined(2).*(N2_array(4)-N2_array(1)))... 
        -(4.76.*totalcombined(2).*(h3_mol-h_mol_standard))); 

  

elseif T4 == 2250 
 x = (LHV_bar_total - (totalcombined(3).*((CO2_array(5)-CO2_array(1))))... 
 -(totalcombined(4).*((H2O_array(5)-H2O_array(1))))... 
        -(3.76.*(totalcombined(2)).*((N2_array(5)-N2_array(1))))... 
        -(y_fuelmix(7).*((N2_array(5)-N2_array(1))))... 
        -(y_fuelmix(9).*((CO2_array(5)-CO2_array(1))))... 
 -(y_fuelmix(8).*((O2_array(5)-O2_array(1))))... 
        +(4.76.*totalcombined(2).*((h3_mol-h_mol_standard))))... 
        ./((totalcombined(2).*((O2_array(5)-O2_array(1))))+... 
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        (3.76.*totalcombined(2).*(N2_array(5)-N2_array(1)))... 
        -(4.76.*totalcombined(2).*(h3_mol-h_mol_standard))); 

  

elseif T4 == 2300 
 x = (LHV_bar_total - (totalcombined(3).*((CO2_array(6)-CO2_array(1))))... 
        -(totalcombined(4).*((H2O_array(6)-H2O_array(1))))... 
 -(3.76.*(totalcombined(2)).*((N2_array(6)-N2_array(1))))... 
        -(y_fuelmix(7).*((N2_array(6)-N2_array(1))))... 
        -(y_fuelmix(9).*((CO2_array(6)-CO2_array(1))))... 
        -(y_fuelmix(8).*((O2_array(6)-O2_array(1))))... 
    +(4.76.*totalcombined(2).*((h3_mol-h_mol_standard))))... 
        ./((totalcombined(2).*((O2_array(6)-O2_array(1))))+... 
        (3.76.*totalcombined(2).*(N2_array(6)-N2_array(1)))... 
        -(4.76.*totalcombined(2).*(h3_mol-h_mol_standard))); 

  

else 

        x = (LHV_bar_total - (totalcombined(3).*((CO2_array(7)-CO2_array(1))))... 
        -(totalcombined(4).*((H2O_array(7)-H2O_array(1))))... 
        -(3.76.*(totalcombined(2)).*((N2_array(7)-N2_array(1))))... 
 -(y_fuelmix(7).*((N2_array(7)-N2_array(1))))... 
        -(y_fuelmix(9).*((CO2_array(7)-CO2_array(1))))... 
        -(y_fuelmix(8).*((O2_array(7)-O2_array(1))))... 
        +(4.76.*totalcombined(2).*((h3_mol-h_mol_standard))))... 
        ./((totalcombined(2).*((O2_array(7)-O2_array(1))))+... 
        (3.76.*totalcombined(2).*(N2_array(7)-N2_array(1)))... 
        -(4.76.*totalcombined(2).*(h3_mol-h_mol_standard))); 

end 

  

% Lists the moles of the products (and O2 reactant) of the combustion reaction: 

y_O2react = (x+1).*(totalcombined(2)); 

y_O2prod = x.*(totalcombined(2)); 

y_CO2prod = totalcombined(3); 

y_H2Oprod = totalcombined(4); 

newly_products_array = [y_CO2prod, y_O2prod, y_H2Oprod, 3.76.*y_O2react]; 

  

MWT_fuel = sum(y_fuelmix.*(MWT_fuelcomponents)); 

AFR_mass =  

((y_O2react.*(4.76).*(0.21.*MWT_fuelcomponents(8)+0.79.*MWT_fuelcomponents(7)))

./MWT_fuel)^-1; 

AFR_molar = (y_O2react.*(4.76)./totalcombined(1))^-1; 

  

total_exhaust_moles = sum(newly_products_array); 

for jj = 1:length(newly_products_array) 
    yi(jj) = newly_products_array(jj)./total_exhaust_moles; 

end 

M_exhaust = sum(yi.*MWT_aircomponents); 

xi = yi.*MWT_aircomponents./M_exhaust; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

y = [yi(2), yi(4), yi(3), yi(1), 0]; 

  

% State 4 - Going into HPT 

T4 = (T4-32)*(5/9)+273.15; 

P4 = P3; 

[~, ~, ~, ~, ~, ~, h4, ~, ~, p0_4] = Calculate_Properties(y, T4, P4*6.89476); 

  

% State 48 - Going into LPT 

P48 = 71; 

p0_48 = p0_4*(P48/P4); 

  

T48 = intp0(p0_48, 500, 1500, P48); 

[~, ~, ~, ~, ~, ~, h48s, ~, ~, ~] = Calculate_Properties(y, T48, P48*6.89476); 

  

h48 = h4 - w_hpt; 

T48 = inth(h48, 500, 1500, P48); 

  

% State 5 - Going into Generator 

P5 = P0 + d_p_out*0.03609; 

p0_5 = p0_48*(P5/P48); 

  

T5 = intp0(p0_5, 273.15, 1000, P5); 

[~, ~, ~, ~, ~, ~, h5s, ~, ~, ~] = Calculate_Properties(y, T5, P5*6.89476); 

  

% Output parameters 

w_lpt = e_lpt*(h48-h5s); 

P_LPT = w_lpt*m_air; 

P = P_LPT*0.977; 

e_th = w_lpt/(h4-h3); 

  

h5 = h48 - w_lpt; 

T5 = inth(h5, 273.15, 1000, P5); 

  

% State 6 - Exhaust 

T6 = T5; 

P6 = P0; 

  

Q_in = m_air*2.20462*(h4-h3)*0.429923; %Btu/s 
m_fuel = Q_in/lhv; %lbs/s 
sfc = m_fuel*3600/P; %lbs/kWh 
hr = sfc*lhv; %Btu/kWh 
  

  

% Interpolation functions 

function T = intp0(p0_t, low, high, P) 
    p0 = 0; 

    while abs(p0_t-p0)>0.00001 
 T = (high+low)/2; 
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 [~, ~, ~, ~, ~, ~, ~, ~, ~, p0] = Calculate_Properties(y, T, P*6.89476); 

 if p0 > p0_t 
 high = T; 

 else 

 low = T; 

 end 

    end  

end 

  

function T = inth(h_t, low, high, P) 
    h = 0; 

    while abs(h-h_t)>0.00001 
 T = (high+low)/2; 

 [~, ~, ~, ~, ~, ~, h, ~, ~, ~] = Calculate_Properties(y, T, P*6.89476); 

 if h > h_t 
 high = T; 

 else 

 low = T; 

 end 

    end 
end 

  

function P = inthp(h_t, low, high, T) 
    h = 0; 

    while abs(h-h_t)>0.00001 
 P = (high+low)/2; 

 [~, ~, ~, ~, ~, ~, h, ~, ~, ~] = Calculate_Properties(y, T, P*6.89476) 

 if h > h_t 
 high = P; 

 else 

 low = P; 

 end 

    end 
end 

end 
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Appendix C - E13XX.m 
 
% M E 343 - Thermal-Fluid Systems - Spring 2018 

% Presented to: Dr. Yaguo Wang, Abdurrahman El-Ghorab 

  

% Nick Behling, Laurence Castaneda, Axel Durham, Avan Zeng 

% Phase 2 

  

%% Below is a script that acts as the benchmark to problem E13.XX on Homework #5-2. 

%% Make sure to have the spreadsheet "Turbine_Inlet_Variation.xlsx" and the 

"StoichTools" folder all in the same path! 

  

% The arrays below correspond to the following constituents: 

%% [Methane, Ethane, Propane, Butane, Pentane, Hexane, Nitrogen, Oxygen, Carbon 

Dioxide] 

  

y_fuelmix = [0.5, 0, 0.5, 0, 0, 0, 0, 0, 0]; 

MWT_fuelcomponents = [16.04, 30.07, 44.1, 58.12, 72.15, 86.18, 28.0134, 31.998, 

44.01]; % kg/kmol 
MWT_aircomponents = [44.01, 31.998, 18.01528, 28.0134] 

LHV_mass_array = [50020, 47480, 46360, 45720, 45350, 44138.176, 0, 0, 0]; % kJ/kg 
LHV_bar_total = sum(y_fuelmix.*MWT_fuelcomponents.*LHV_mass_array); % kJ/kmol 
LHV_total = LHV_bar_total./(sum(y_fuelmix.*MWT_fuelcomponents)); %kJ/kg 
  

file = "Turbine_Inlet_Variation.xlsx"; 
temp_array = xlsread(file,1,"A2:A4"); 
CO2_array = xlsread(file,1,"B2:B4"); 
H2O_array = xlsread(file,1,"C2:C4"); 
N2_array = xlsread(file,1,"D2:D4"); 
O2_array = xlsread(file,1,"E2:E4"); 
  

% Group 4 found a folder of MATLAB scripts online that deals with 

% stoichiometric equations. We utilized one of them, called "stoich", in this 

% script. Below shows the syntax of the "stoich" function. For example, if 

% you type: 

  

% "stoich({'CH4', 'O2','CO2','H2O'})", it'll output: 

  

% "CH4 + 2 O2 <=> CO2 + 2 H2O", as well as the moles of the 

% coefficients, shown below. Negative indicates reactants, positive 

% indicates products. The first number is the hydrocarbon, second is O2, 

% third is CO2, and fourth is H2O. 

  

% Don't worry about signs, Group 4 takes the absolute value of 

% everything anyway. It all works out. 

  

% -1 

% -2 

% 1 

% 2 
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% For your reference: 

  

% stoich({'CH4', 'O2','CO2','H2O'}) % Methane 

% stoich({'C2H6','O2','CO2','H2O'}) % Ethane 

% stoich({'C3H8', 'O2','CO2','H2O'}) % Propane 

% stoich({'C4H10','O2','CO2','H2O'}) % Butane 

% stoich({'C5H12','O2','CO2','H2O'}) % Pentane 

% stoich({'C6H14','O2','CO2','H2O'}) % Hexane 

  

% Copyright Jeffrey Kantor, University of Notre Dame. All rights reserved. 

  

methane = stoich({'CH4', 'O2','CO2', 'H2O'}).*(y_fuelmix(1)) 
ethane = stoich({'C2H6','O2','CO2','H2O'}).*(y_fuelmix(2)) 
propane = stoich({'C3H8', 'O2', 'CO2','H2O'}).*(y_fuelmix(3)) 
butane = stoich({'C4H10','O2','CO2','H2O'}).*(y_fuelmix(4)) 
pentane = stoich({'C5H12','O2','CO2','H2O'}).*(y_fuelmix(5)) 
hexane = stoich({'C6H14','O2','CO2','H2O'}).*(y_fuelmix(6)) 
  

combinedHCs = abs(methane+ethane+propane+butane+pentane+hexane) 

combined = [combinedHCs(1);((combinedHCs(3)+y_fuelmix(9))*2+combinedHCs(4)... 
    -(2*y_fuelmix(9))-(2*y_fuelmix(8)))/2;combinedHCs(3)+y_fuelmix(9);combinedHCs(4)] 

  

%% Below finds the amount of excess oxygen, "x". 

for i = 3:length(temp_array) 
    x = (LHV_bar_total - (combined(3).*((CO2_array(i)-CO2_array(1))))... 
        -(combined(4).*((H2O_array(i)-H2O_array(1))))... 
 -(3.76.*(combined(2)).*((N2_array(i)-N2_array(1))))... 
        +(3.76.*combined(2).*((N2_array(2)-N2_array(1))))... 
        +(combined(2).*((O2_array(2)-O2_array(1)))))... 
        ./((combined(2).*((O2_array(i)-O2_array(1))))+... 
 

(3.76.*combined(2).*(N2_array(i)-N2_array(1)))-(3.76.*combined(2).*((N2_array(2)-N2_ar

ray(1))))... 
        -(combined(2).*((O2_array(2)-O2_array(1))))) 

end 

  

y_O2react = (x+1).*(combined(2)) 

y_O2prod = x.*(combined(2)) 

y_CO2prod = combined(3) 

y_H2Oprod = combined(4) 

newly_products_array = [y_CO2prod, y_O2prod, y_H2Oprod, 3.76.*y_O2react] 

  

MWT_fuel = sum(y_fuelmix.*(MWT_fuelcomponents)) 

AFR_mass = 

((y_O2react.*(4.76).*(0.21.*MWT_fuelcomponents(8)+0.79.*MWT_fuelcomponents(7)))./MWT_f

uel)^-1 

AFR_molar = (y_O2react.*(4.76)./combined(1))^-1 

  

total_exhaust_moles = sum(newly_products_array) 
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for jj = 1:length(newly_products_array) 
    yi(jj) = newly_products_array(jj)./total_exhaust_moles 

end 

  

M_exhaust = sum(yi.*MWT_aircomponents) 

xi = yi.*MWT_aircomponents./M_exhaust 
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Appendix D - sensitivity.m 
 
%plots 

T0 = 65; 

humid = 0.6; 

T4 = 2200; 

e_lpt = 0.817; 

e_lpc = 0.779; 

  

[P_0, e_th_0, hr_0] = phase2(T0, humid, e_lpt, e_lpc, T4); 

  

T0_array = 25:10:105; 

for n = 1: numel(T0_array) 
    T0 = T0_array(n); 

    [P, e_th, hr] = phase2(T0, humid, e_lpt, e_lpc, T4); 

    th_array1(n) = (e_th-e_th_0)*100/e_th_0; 

    P_array1(n) = (P-P_0)*100/P_0; 

    hr_array1(n) = (hr-hr_0)*100/hr_0; 

end 

  

T0 = 65; 

humid_array = 0.2:0.1:1.0; 

for n = 1: numel(humid_array) 
    humid = humid_array(n); 

    [P, e_th, hr] = phase2(T0, humid, e_lpt, e_lpc, T4); 

    th_array2(n) = (e_th-e_th_0)*100/e_th_0; 

    P_array2(n) = (P-P_0)*100/P_0; 

    hr_array2(n) = (hr-hr_0)*100/hr_0; 

end 

  

T0 = 65; 

humid = 0.6; 

lpt_array = 0.741:0.019:0.893; 

for n = 1: numel(lpt_array) 
    e_lpt = lpt_array(n); 

    [P, e_th, hr] = phase2(T0, humid, e_lpt, e_lpc, T4); 

    th_array3(n) = (e_th-e_th_0)*100/e_th_0; 

    P_array3(n) = (P-P_0)*100/P_0; 

    hr_array3(n) = (hr-hr_0)*100/hr_0; 

end 

  

T0 = 65; 

humid = 0.6; 

e_lpt = 0.817; 

lpc_array = 0.703:0.019:0.855; 

for n = 1: numel(lpc_array) 
    e_lpc = lpc_array(n); 

    [P, e_th, hr] = phase2(T0, humid, e_lpt, e_lpc, T4); 

    th_array4(n) = (e_th-e_th_0)*100/e_th_0; 

    P_array4(n) = (P-P_0)*100/P_0; 
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    hr_array4(n) = (hr-hr_0)*100/hr_0; 

end 

  

T0 = 65; 

humid = 0.6; 

e_lpt = 0.817; 

e_lpc = 0.779; 

T4_array = 2100:50:2300; 

for n = 1: numel(T4_array) 
    T4 = T4_array(n); 

    [P, e_th, hr] = phase2(T0, humid, e_lpt, e_lpc, T4); 

    th_array5(n) = (e_th-e_th_0)*100/e_th_0; 

    P_array5(n) = (P-P_0)*100/P_0; 

    hr_array5(n) = (hr-hr_0)*100/hr_0; 

end 

  

subplot(2,3,1) 

plot(T0_array, th_array1,"-*", T0_array, P_array1, T0_array, hr_array1) 
xlabel("Temperature (°F)") 
ylabel("% change") 
title("Compressor Inlet (Ambient) Temperature Sensitivity") 
xlim([25 105]) 

ylim([-10 10]) 

legend("\eta_{th}", "Power", "Heat Rate") 
  

subplot(2,3,2) 

plot(humid_array*100, th_array2,"-*", humid_array*100, P_array2, humid_array*100,     

hr_array2) 

xlabel("Humidity (%)") 
ylabel("% change") 
title("Humidity Sensitivity") 
xlim([20 100]) 

ylim([-10 10]) 

legend("\eta_{th}", "Power", "Heat Rate") 
  

subplot(2,3,3) 

plot(lpt_array*100, th_array3, "-*", lpt_array*100, P_array3, lpt_array*100,      

hr_array3) 

xlabel("LPT Efficiency (%)") 
ylabel("% change") 
title("Turbine Efficiency Sensitivity") 
xlim([74.1 89.3]) 

ylim([-10 10]) 

legend("\eta_{th}", "Power", "Heat Rate") 
  

subplot(2,3,4) 

plot(lpc_array*100, th_array4,"-*", lpc_array*100, P_array4, lpc_array*100, hr_array4) 
xlabel("LPC/HPC Efficiency (%)") 
ylabel("% change") 
title("Compressor Efficiency Sensitivity") 
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xlim([70.3 85.5]) 

ylim([-10 10]) 

legend("\eta_{th}", "Power", "Heat Rate") 
  

subplot(2,3,5) 

plot(T4_array, th_array5,"-*", T4_array, P_array5, T4_array, hr_array5) 
xlabel("Temperature (°F)") 
ylabel("% change") 
title("Turbine Inlet Temperature Sensitivity") 
xlim([2100 2300]) 

ylim([-10 10]) 

legend("\eta_{th}", "Power", "Heat Rate")  
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Appendix E - calibration.m 
 
clear; 

  

T0 = [30:5:110]; 

humid = 0.6; 

e_lpt = .95; 

e_lpc = .95; 

T4 = 2400; 

  

for ii = [1:17]; 
    [Power(ii), e_th(ii), hr_1(ii)] = phase2(T0(ii), humid, e_lpt, e_lpc, T4); 

end 

  

%plots 

T_array = (30:5:110); 

th_array = zeros(1,numel(T_array)); 

m_array = zeros(1,numel(T_array)); 

sfc_array = zeros(1,numel(T_array)); 

hr_array = zeros(1,numel(T_array)); 

PLPT_array = zeros(1,numel(T_array)); 

file = "values.xlsx"; 
P_array = xlsread(file, 1, "G34:W34"); 
for n = 1: numel(T_array) 
    T = T_array(n); 

    P = P_array(n); 

    [th, m, sfc, hr, PLPT] = phase1params_calibration(T, P); 

    th_array(n) = th*100; 

    m_array(n) = m; 

    sfc_array(n) = sfc; 

    hr_array(n) = hr; 

    PLPT_array(n) = PLPT; 

end 

  

file = "values.xlsx"; 
  

PLPT_vals = xlsread(file, 1, "G148:W148"); 
PLPT_vals = PLPT_vals; 

  

plot(T_array, Power, T_array, PLPT_vals, '*') 
xlabel("Inlet Temperature (°F)") 
ylabel("Power Output (kW))") 
title("P_{net} vs. Inlet Temperature") 
xlim([30 110]) 

legend("Calculated", "From Table") 
  

Z = (((sum((Power-PLPT_vals).^2)) / 17)^0.5); 

avg_Power = sum(PLPT_vals)/17; 

percent_error = Z/avg_Power*100; 
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Appendix F - phase1params_calibration.m 

% M E 343 - Thermal-Fluid Systems - Spring 2018 

% Presented to: Dr. Yaguo Wang, Abdurrahman El-Ghorab 

  

% Nick Behling, Laurence Castaneda, Axel Durham, Avan Zeng 

% Phase 1 

  

% This script performs the underlying calculations for the gas turbine that 

% will be used to compare with the GE/UT data in graph form. DO NOT RUN 

% THIS CODE! 

  

function [e_th, m_fuel, sfc, hr, PLPT] = phase1params_calibration(T0, P) 
%input parameters 

P0 = 14.417; %psi 
%T0 = 65; %F 

rh0 = 0.6; 

m_air = 86.046; %kg/sec 
d_p_in = 4; %in h20 
d_p_out = 10; 

lhv = 20185; %btu/lbs 
e_lpc = 0.82; 

e_hpc = 0.84; 

x_wv = 0.007955; 

y_wv = 0.0127; 

y_o2 = 0.20; 

y_n2 = 0.78; 

y_h2o = y_wv; 

y_co2 = 0.000004; 

y_ar = 0.0073; 

y = [y_o2, y_n2, y_h2o, y_co2, y_ar]; 

  

%state 1 

T1 = T0; 

P1 = P0; 

  

%state 2 

T2 = T1; 

P2 = P1 - d_p_in*0.03609; 

  

%find cp, cv, k, h1 and h2 

[~, ~, ~, ~, ~, ~, h2, ~, ~, p0_2] = Calculate_Properties(y, (T2-32)*(5/9)+273.15,             

P2*6.89476); 

h1 = h2; 

  

%state 2.5 

P25 = 6*P2; 

p0_25 = 6*p0_2; 

%find T25 

T25 = intp0(p0_25, 273.15, 1000, P25); 
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[~, ~, ~, ~, ~, ~, h25s, ~, ~, ~] = Calculate_Properties(y, T25, P25*6.89476); 

h25 = (h25s-h2)/e_lpc+h2; 

  

w_lpc = h25 - h2; 

T25 = inth(h25, 273.15, 1000, P25); 

[~, ~, ~, ~, ~, ~, ~, ~, ~, p0_25] = Calculate_Properties(y, T25, P25*6.89476); 

  

%state 3 

P3 = 4*P25; 

p0_3 = p0_25*4; 

  

T3 = intp0(p0_3, 273.15, 1000, P3); 

[~, ~, ~, ~, ~, ~, h3s, ~, ~, ~] = Calculate_Properties(y, T3, P3*6.89476); 

h3 = (h3s-h25)/e_hpc+h25; 

T3 = inth(h3, 273.15, 1000, P3); 

  

w_hpt = h3-h25+w_lpc; 

  

%state 4 

T4 = (2200-32)*(5/9)+273.15; 

P4 = P3; 

[~, ~, ~, ~, ~, ~, h4, ~, ~, p0_4] = Calculate_Properties(y, T4, P4*6.89476);A 

  

%state 48 

P48 = 71; 

p0_48 = p0_4*(P48/P4); 

  

T48 = intp0(p0_48, 500, 1500, P48); 

[~, ~, ~, ~, ~, ~, h48s, ~, ~, ~] = Calculate_Properties(y, T48, P48*6.89476); 

  

  

h48 = h4 - w_hpt; 

T48 = inth(h48, 500, 1500, P48); 

  

%state 5 

P_LPT = P/0.977; 

w_lpt = P_LPT/m_air; 

  

P5 = P0 + d_p_out*0.03609; 

p0_5 = p0_48*(P5/P48); 

  

T5 = intp0(p0_5, 273.15, 1000, P5); 

[~, ~, ~, ~, ~, ~, h5s, ~, ~, ~] = Calculate_Properties(y, T5, P5*6.89476); 

h5 = h48 - w_lpt; 

T5 = inth(h5, 273.15, 1000, P5); 

  

%state 6 

T6 = T5; 

P6 = P0; 
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%output parameters 

e_th = w_lpt/(h4-h3); 

  

PLPT = P_LPT; 

Q_in = m_air*2.20462*(h4-h3)*0.429923; %Btu/s 
m_fuel = Q_in/lhv; %lbs/s 
sfc = m_fuel*3600/P; %lbs/kWh 
hr = sfc*lhv; %Btu/kWh 
  

  

%interpolation functions 

function T = intp0(p0_t, low, high, P) 
    p0 = 0; 

    while abs(p0_t-p0)>0.00001 
 T = (high+low)/2; 

 [~, ~, ~, ~, ~, ~, ~, ~, ~, p0] = Calculate_Properties(y, T, P*6.89476); 

 if p0 > p0_t 
 high = T; 

 else 

 low = T; 

 end 

    end  

end 

  

function T = inth(h_t, low, high, P) 
    h = 0; 

    while abs(h-h_t)>0.00001 
 T = (high+low)/2; 

 [~, ~, ~, ~, ~, ~, h, ~, ~, ~] = Calculate_Properties(y, T, P*6.89476); 

 if h > h_t 
 high = T; 

 else 

 low = T; 

 end 

    end 
end 

end 
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Appendix G - DriverFile.m 

% M E 343 - Thermal-Fluid Systems - Spring 2018 

% Presented to: Dr. Yaguo Wang, Abdurrahman El-Ghorab 

  

% Nick Behling, Laurence Castaneda, Axel Durham, Avan Zeng 

% Phase 2 - Driver File 

  

% This file allows the user to enter the following input paraemeters: inlet 

% ambient temperature, T0; the relative humidity, humid; the efficiency of 

% the low pressure turbine, e_lpt, which we found to be 95%; the efficiency 

% of the low pressure compressor, e_lpc, which is the same efficiency as 

% the high pressure compressor, e_hpc; and the combustor temperature, T4. 

  

% The underlying code, phase2.m, calculates the power output, P; the 

% thermal efficiency, e_th; and the heat rate, hr. 

  

T0 = input('Enter the Ambient Inlet Temperature (°F, range from 0-110°F):') 
humid = input('Enter the Relative Humidity (Decimal, range from 0-1):') 
e_lpt = input('Enter the Efficiency of LPT (Decimal, range from 0-1):') 
e_lpc = input('Enter the Efficiency of LPC (Decimal, range from 0-1):') 
T4 = input('Enter the Combustor Temperature (°F, range from 2,100-2,400°F):') 
  

[P, e_th, hr] = phase2(T0, humid, e_lpt, e_lpc, T4) 
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Appendix H - stoich.m 

function V = stoich(varargin) 
  

% STOICH  Computes a stoichiometric matrix for a set of chemical species. 

% 

% SYNTAX 

% 

% V = stoich(species) 

% V = stoich(r) 

% 

%   Returns the stoichiometric matrix V for a collection set of chemical 

%   species. The speciies may be specified as a cell array of chemical 

%   formulas, or as a structure array of atomic representations. The 

%   output V is an N x K matrix where each column corresponds to an 

%   independent reaction among N chemical species. The stoichiometric 

%   coefficient is negative for a reactant, and postive for a reaction 

%   product. 

% 

% stoich(species) 

% stoick(r) 

% 

%   Computes the stoichiometric matrix and displays the resulting 

%   reactions. 

% 

% 

% EXAMPLES 

% 

%   1. Combustion products of methane 

% 

% >> V = stoich({'CH4','O2','CO2','H2O'}); 

% 

% produces 

% 

% V = 

% -1 

% -2 

% 1 

% 2 

% 

%   2. Calling stoich without an output argument displays the reaction. 

% 

% >> stoich({'CH4','O2','CO2','H2O'}); 

% 

% produces 

% 

% CH4 + 2 O2  <=> CO2 + 2 H2O 

% 

%   3. Case of multiple independent reactions 

% 
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% >> stoich({'CH4','O2','CO','CO2','H2O'}) 

% 

% produces 

% 

% CH4 + 3 CO2  <=> 4 CO + 2 H2O 

% O2 + 2 CO  <=> 2 CO2 

% 

% ans = 

% -1 0 

% 0 -1 

% 4 -2 

% -3 2 

% 2 0 

% 

%   4. Case of no possible reactions 

% 

% >> stoich({'CH4','O2','CO2'}) 

% 

% produces 

% 

% No reactions to display. 

% 

% ans = 

% Empty matrix: 3-by-0 

% 

% 

% USAGE NOTES 

% 

%   1. The stoichometric matrix satisfies the relationship A*V = 0 

% where A is the atomic matrix. V is N x K where N is the number of 

% species, and K is the number of independent reactions. 

% 

%   2. stoich creates a rational approximation to the stoichiometric matrix 

% that does a reasonable job of scaling the stoichiometric 

% coefficients. Any scaling V*diag(D) where D is an K element vector 

% of scaling coefficients is also a valid stoichiometric matrix. 

% 

  

% AUTHOR 

% 

%   Jeff Kantor' 

%   December 18, 2010 

  

  

    assert(nargin > 0, 'stoich:input', ['No input. Expects a cell ', ... 
 'array of formulas or struct array of atoms.']); 
    assert(nargin < 2, 'stoich:input', 'Unexpected extra inputs.'); 
  

    % Process function argument to produce a cell array of chemical 
    % formulas and structure array of atomic representations. 
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    switch class(varargin{1}) 
 case 'char' % Single formula 

 species = varargin; 

 r = parse_formula(species); 

  

 case 'cell'                      % Cell array of formulas 
 species = varargin{1}; 

 r = parse_formula(species); 

  

 case 'struct' % Structure array 

 r = varargin{1}; 

 species = hillformula(r); 

  

 otherwise 

 error('stoich:input',['requires cell array of chemical ',... 
 'formulas or a structure array of atomic representations']); 
    end 
  

    % Compute the stoichiometric matrix by finding the null space of the 
    % atomic matrix. 
  

    A = atomic(r); 

    V = -rref(null(A)')'; 

  

    % Create a rational approximation to the stoichiometric matrix. This 
    % generally does a good job of scaling the stoichiometric coefficients 
    % to meaningful values. 
  

    [num,den] = rat(V); 

    V = num./den; 

  

    % Display the reactions if there is no other output. 
  

    if nargout == 0 
 disp_reaction(V,species); 

    end 
  

end 
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